Responding Collaboratively to Nitrate

John Exo, Extension Water Quality Specialist College of Ag & Life Sciences, UW-Madison john.exo@wisc.edu

Extension UNIVERSITY OF WISCONSIN-MADISON

Major points

- Why tackle nitrate?
- Create & leverage partnerships to address nitrate
- Scan of collaborative models

Nitrate Level by township

Groundwater Susceptibility

Health & Environmental Effects of Nitrate

Health

- Can cause blue baby syndrome
- Increased risk of:
 - Colon cancer; birth defects; thyroid disease
- Aborted fetuses > livestock

Environmental

- Eutrophication > Anoxia (low oxygen level) surface water
- Harmful algal blooms (HABs)
- Freshwater and ocean "dead zones" in estuaries

Nitrate Driving Eutrophication

Norton Slough – Lower Wisconsin Riverway

Photos: Dave Marshall, WI DNR

	Practice	Comments		% Nitrate-N Reduction [*]	% Corn Yield Change ^{**}	
			Average (SD [†])	Average (SD^{\dagger})		
	Timing	Moving from fall to spring pre-plant application	1	6 (25)	4 (16)	
		Spring pre-plant/sidedress 40-60 split Compared to fall-applied		5 (28)	10 (7)	
		Sidedress – Compared to pre-plant application		7 (37)	0 (3)	
		Sidedress – Soil test based compared to pre-plant		4 (20)	13 (22)**	
Nitrogen Management [‡]	Source	Liquid swine manure compared to spring-applied fertilize		4 (11)	0 (13)	
		Poultry manure compared to spring-applied fertilizer		-3 (20)	-2 (14)	
	Nitrogen Application Rate	Nitrogen rate at the MRTN (0.10 N:corn price ratio) compared to current estimated application rate. (<u>ISU Corn Nitrogen Rate Calculator</u> – http://cnrc.agron.iastate.edu can be used to estimate MRTN but this would change Nitrate-N concentration reduction)		10	-1	
	Nitrification Inhibitor	Nitrapyrin in fall – Compared to fall-applied without Nitrapyrin		9 (19)	6 (22)	J
	Cover Crops	Rye		31 (29)	-6 (7)	
		Oat		28 (2)	-5 (1)	
	Living Mulches	e.g. Kura clover – Nitrate-N reduction from one site		41 (16)	-9 (32)	
and Use	Perennial	Energy Crops – Compared to spring-applied fertilizer	7	72 (23)		\square
		Land Retirement (CRP) – Compared to spring-applied fertilizer	·	85 (9)		
	Extended Rotations	At least 2 years of alfalfa in a 4 or 5 year rotation	t	42 (12)	7 (7)	
Ľ	Grazed Pastures	No pertinent information from Iowa – assume similar to CR	R	85		

Range of Nitrate Reduction

A Case for Partnerships

- Large increases in adoption of N management practices needed
- Equity and fairness pervades everything
- Opportunities for civic engagement
- Counteract desperation and frustration
- Maximize existing \$ and other resources
- *Expand* \$ and other resources

Sauk Soil & Water Improvement Group

Dodge County Alliance for Healthy Soil – Healthy Water

Partnership Models

- Social-Intellectual
- Knowledge sharing
- Financial
- Policy

Local Nitrate Partnerships

- Bear Creek/Chippewa Farmer Groundwater Group
- Farmers for Tomorrow (River)

State-level Nitrate Partnership

Extension, DNR, DATCP, NRCS

- Identifying mutual needs & priorities
- Addressing gaps in research, funding, training, outreach
- Training internally & externally on state of science and best practices
- Developing nitrogen leaching tools to inform on-farm, agronomic decision-making
- Consensus on the science & associated reality
- Support for local partnerships

John Exo, UW-Madison Division of Extension john.exo@wisc.edu

Extension UNIVERSITY OF WISCONSIN-MADISON